Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Similarity Measure for Nonparametric Kernel Density Based Object Tracking

An object tracking algorithm using a novel simple symmetric similarity function between spatially-smoothed kernel-density estimates of the model and target distributions is proposed and tested. The similarity measure is based on the expectation of the density estimates over the model or target images. The density is estimated using radial-basis kernel functions that measure the affinity between...

متن کامل

Kernel-Based Hybrid Random Fields for Nonparametric Density Estimation

Hybrid random fields are a recently proposed graphical model for pseudo-likelihood estimation in discrete domains. In this paper, we develop a continuous version of the model for nonparametric density estimation. To this aim, Nadaraya-Watson kernel estimators are used to model the local conditional densities within hybrid random fields. First, we introduce a heuristic algorithm for tuning the k...

متن کامل

Nonparametric kernel density estimation near the boundary

Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and finite sample performance conditional on the shape of the density near zero and the exact form of the cho...

متن کامل

Probit Transformation for Nonparametric Kernel Estimation of the Copula Density

Copula modelling has become ubiquitous in modern statistics. Here, the problem of nonparametrically estimating a copula density is addressed. Arguably the most popular nonparametric density estimator, the kernel estimator is not suitable for the unit-square-supported copula densities, mainly because it is heavily a↵ected by boundary bias issues. In addition, most common copulas admit unbounded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Water Resources

سال: 2021

ISSN: 0309-1708

DOI: 10.1016/j.advwatres.2021.103889