Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملSimilarity Measure for Nonparametric Kernel Density Based Object Tracking
An object tracking algorithm using a novel simple symmetric similarity function between spatially-smoothed kernel-density estimates of the model and target distributions is proposed and tested. The similarity measure is based on the expectation of the density estimates over the model or target images. The density is estimated using radial-basis kernel functions that measure the affinity between...
متن کاملKernel-Based Hybrid Random Fields for Nonparametric Density Estimation
Hybrid random fields are a recently proposed graphical model for pseudo-likelihood estimation in discrete domains. In this paper, we develop a continuous version of the model for nonparametric density estimation. To this aim, Nadaraya-Watson kernel estimators are used to model the local conditional densities within hybrid random fields. First, we introduce a heuristic algorithm for tuning the k...
متن کاملNonparametric kernel density estimation near the boundary
Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and finite sample performance conditional on the shape of the density near zero and the exact form of the cho...
متن کاملProbit Transformation for Nonparametric Kernel Estimation of the Copula Density
Copula modelling has become ubiquitous in modern statistics. Here, the problem of nonparametrically estimating a copula density is addressed. Arguably the most popular nonparametric density estimator, the kernel estimator is not suitable for the unit-square-supported copula densities, mainly because it is heavily a↵ected by boundary bias issues. In addition, most common copulas admit unbounded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Water Resources
سال: 2021
ISSN: 0309-1708
DOI: 10.1016/j.advwatres.2021.103889